Selecionar Exercício
Uma empresa de recolha seletiva de lixo utiliza dois camiões para o transporte de lixo, cujas capacidades de carga são 3 e 4 toneladas. Durante uma semana, os dois camiões realizaram 23 viagens, com carga máxima, para transportar 80 toneladas de lixo.
Seja $x$ o número de viagens realizadas pelo camião com capacidade de carga de 3 toneladas e seja $y$ o número de viagens realizadas pelo camião com capacidade de carga de 4 toneladas.
Escreve um sistema de equações, com as incógnitas $x$ e $y$, que permita determinar o número de viagens que cada camião efetuou. Não resolvas o sistema.
Imagem da solução
Resolução do Exercício:
Como $x$ é o número de viagens realizadas pelo camião com capacidade de carga de 3 toneladas e $y$ é o número de viagens realizadas pelo camião com capacidade de carga de 4 toneladas, e durante a semana, os dois camiões realizaram 23 viagens, temos que $x+y=23$
Como as viagens foram realizadas com a carga máxima, ou seja, $3 x$ toneladas carregadas por um camião em $x$ viagens, e $4 y$ toneladas carregas pelo outro camião em $y$ viagens; e como sabemos que ao todo foram carregadas 80 toneladas de lixo, temos que $3 x+4 y=80$
Assim, um sistema de equações que permite determinar o número de viagens que cada camião efetuou, é:
Comentários
Neste momento, não há comentários para este exercício.
Para comentar, por favor inicia sessão ou cria uma conta.