?
?
Cria conta para teres acesso a vídeos, estatísticas do teu progresso, exercícios originais e mais!
Dificuldade: díficil

Na figura seguinte, estão representados, em referencial cartesiano, de origem no ponto $\mathrm{O}$, as retas $r$ e $s$ e o ponto $P$.

Sabe-se que:

  • as retas $r$ e $s$ são paralelas;
  • a reta $s$ é definida pela equação $y=-3 x+5$
  • o ponto $P$ pertence à reta $r$ e tem coordenadas $(3,6)$.

Determina a equação da reta $r$ na forma $y=a x+b$.

Apresenta todos os cálculos que efetuares.

Fonte: Exame Matemática 3º Ciclo - 2021, 1ª Fase - Grupo Exercício 658
|

Resolução do Exercício:

Como as retas $r$ e $s$ são paralelas o declive da reta $r$ é igual ao declive da reta $s$, ou seja, $-3$

Assim, a equação da reta $r$ é da forma $y=-3 x+b$

Substituindo as coordenadas do ponto $P$, podemos determinar o valor de $b$ :

$$6=-3 \times 3+b \Leftrightarrow 6=-9+b \Leftrightarrow 6+9=b \Leftrightarrow 15=b$$

E assim, temos que uma equação da reta $r$ é:

$$y=-3 x+15$$

Fonte: Matemática? Absolutamente!




Comentários

Neste momento, não há comentários para este exercício.

Para comentar, por favor inicia sessão ou cria uma conta.